skip to main content


Search for: All records

Creators/Authors contains: "Hayran, Zeki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Photonic time-varying systems have attracted significant attention owing to their rich physics and potential opportunities for new and enhanced functionalities. In this context, the duality of space and time in wave physics has been particularly fruitful to uncover interesting physical effects in the temporal domain, such as reflection/refraction at temporal interfaces and momentum-bandgaps in time crystals. However, the characteristics of the temporal/frequency dimension, particularly its relation to causality and energy conservation (ℏ<#comment/>ω<#comment/>is energy, whereasℏ<#comment/>kis momentum), create challenges and constraints that are unique to time-varying systems and are not present in their spatially varying counterparts. Here, we overview two key physical aspects of time-varying photonics that have only received marginal attention so far, namely temporal dispersion and external power requirements, and explore their implications. We discuss how temporal dispersion, an inherent property of any physical causal material, makes the fields evolve continuously at sharp temporal interfaces and may limit the strength of fast temporal modulations and of various resulting effects. Furthermore, we show that changing the refractive index in time always involves large amounts of energy. We derive power requirements to observe a time-crystal response in one of the most popular material platforms in time-varying photonics, i.e., transparent conducting oxides, and we argue that these effects are almost always obscured by less exotic nonlinear phenomena. These observations and findings shed light on the physics and constraints of time-varying photonics, and may guide the design and implementation of future time-modulated photonic systems.

     
    more » « less
  2. Causality—the principle stating that the output of a system cannot temporally precede the input—is a universal property of nature. Here, we show that analogous input-output relations can also be realized in the spectral domain by leveraging the peculiar properties of time-modulated non-Hermitian photonic systems. Specifically, we uncover the existence of a broad class of complex time-modulated metamaterials that obey the time-domain equivalent of the well-established frequency-domain Kramers–Kronig relations (a direct consequence of causality). We find that, in the scattering response of such time-modulated systems, the output frequencies are inherently prohibited from spectrally preceding the input frequencies, and hence we refer to these systems as “spectrally causal.” We explore the consequences of this newly introduced concept for several relevant applications, including broadband perfect absorption, temporal cloaking of an “event,” and truly unidirectional propagation along a synthetic dimension. By emulating the concept of causality in the spectral domain and providing new tools to extend the field of temporally modulated metamaterials (“chrono-metamaterials”) into the complex realm, our findings may open unexplored opportunities and enable relevant technological advances in various areas of photonics and, more broadly, of wave physics and engineering.

     
    more » « less